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Abstract

The objective of this investigation is to study the random vibration of a nonlinear geometrically shell
structure by using the finite element method in conjunction with the equivalent linearization approach.
When the shell structure is subjected to excessive loadings, the large deformations of the shell structure
must be considered. In that sense, the stiffness of the governing equation of the shell structure is related to
deflection; therefore, it is nonlinear and difficult to solve. In this study, the applied loadings to the shell
structure are assumed to be a nonstationary random excitation to characterize many physical loadings such
as earthquake, wind, aerodynamic and acoustic loadings. The equivalent linearization and the finite
element method are adopted to perform the nonlinear random vibration analysis of the shell structures,
which can be quite nonuniform and complex in geometry or nonhomogeneous in material. These obtained
statistical dynamics responses are very useful for estimating the structure safety and reliability. Meanwhile,
some statistical responses obtained by the present approach are checked by the Monte Carlo simulation
technique.
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1. Introduction

Under the analysis of continuous criteria, the classical shell theory produces the equations that
are very difficult to solve and these governing equations can be carried out only if some
assumptions are made, such as Kirchhoff’s hypothesis. Many researches in the analysis of
complex structures are limited to linearly elastic problem. The linearly elastic behaviors of the
structural systems are under the assumptions that the displacements of the finite element
assemblage are infinitesimally small and that the material is linearly elastic, and then the
equilibrium equations can be constructed with the nature of the boundary conditions remaining
unchanged during the application of the loads on the finite element assemblage. When the large
deformation of the thin plate or think shell structures is considered, nonlinear behaviors must be
undertaken nowadays more often than that in the past. The finite element method has been widely
used in both civil engineering and mechanical structure recently, which in conjunction with the
electronic digital computer have accomplished the numerical idealization and solution of the
continuous system in a matrix manner, and in effect have made possible the practical extension
and application of the classical procedures to very complex engineering systems.

In general, two nonlinear behaviors are considered in the structural analysis: the geometrically
nonlinear and materially nonlinear. The geometrically nonlinear problems occur when the
structure is under a large deformation and the materially nonlinear effects lie in the nonlinear
stress–strain relation as well. Meanwhile, in order to improve the solution accuracy, it is necessary
to carry out the governing equations by iterative schemes. The well known Newton–Raphson
method and the modified Newton–Raphson procedure have been well developed in many
textbooks. However, many researchers have contributed to the development of nonlinear
problems and the brief reviews are given as follows. Stricklin and Haisler [1] presented the
assessment of the solution procedures available for the analysis of inelastic and/or large deflection
structural behavior. Also, Bergan and Soreide [2] gave a brief review on some of the most
important techniques used for solving nonlinear equations in structural problems. Wood and
Zienkiewicz [3] studied the geometrically nonlinear behaviors of elastic inplane oriented bodies by
using a modified isoparametic finite element method. In general, we often use total Lagrangian
formulations to approach the problem of solid mechanics; Horrigmoe and Bergan [4] described a
general formulation for geometrically nonlinear analysis of shells using the flat finite elements,
which was based on the updated Lagrangian description. The implicit time integration
method for solving the nonlinear dynamic problems were discussed and evaluated by Bathe
and Cimento [5]. Surana [6] studied the statically geometric nonlinearity for a curved shell
structure by using total Lagrangian approach. The existing shell element formulations were
restricted to small nodal rotations between two successive increments. The element formulation
presented by this study removed such restrictions. Chakravorty and his associates [7] used an
eight-noded isoparametric finite element to investigate the free vibration behaviors of a linear
doubly curved conoidal shell structure. Ramesh and Krishnamoorthy [8] investigated the
application of dynamic relaxation method to the geometrically nonlinear analysis of plated and
shell involving large deflection, small rotations and strain. Damatty and his associates [9] adopted
the total Lagrangian approach to perform the static and dynamic analysis of shell structures
based on consistent shell element. Yadav and Verma [10] studied the free vibration of composite
circular cylindrical shells with random material properties. Mao and Williams [11] adopted the
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nonlinear and non shallow thick shell theory to perform the nonlinear analysis of cross-ply thick
cylindrical shells under axial compression. Chang et al. [12] performed the nonlinear vibration
analysis of a geometrically nonlinear shell structure using the finite element approach. Vu-Quoc et
al. [13] presented a finite element formulation for the dynamic analysis of the geometrically exact
sandwich shells by accommodating the large deformation and large overall motion. Popov [14]
demonstrated in a tutorial fashion how recent ideas and methods of bifurcation theory and
nonlinear dynamics have improved the understanding of structural buckling under dynamic loads
and vibrations of shells under parametric excitation, he focused on geometrically nonlinear forced
vibration of circular cylindrical shells. Recently Nagai et al. [15] investigated the effects of a
concentrated mass on chaotic oscillations of a shallow cylindrical shell under gravity and periodic
acceleration.
One of the most widely used approximation techniques for the nonlinear problem is the

equivalent linearization that the nonlinearities in system are replaced by effective linear systems.
Generally speaking, this method was the statistical extension of Krylov and Bogoliubov’s [16]
linearization technique and was first introduced by Booton [17] and Caughey [18]. Also,
equivalent linearization method has been developed in the field of mechanical and structural
systems by Foster [19]. In addition, a particular form of fluid damping based on statistical
averaging was performed by linearization scheme by Malhotra and Penzien [20]. Continuously,
Kaul and Penzien [21] extended the previous approach to analyze the nonstationary responses of
an offshore structure subjected to earthquake motion. Atalik and Utaku [22] used the stochastic
linearization approach to obtain the response of nonlinear multi-degree of freedom dynamic
systems under stationary excitation. Iwan and Mason [23] adopted the method of equivalent
linearization to study the general problem of the response of nonlinear discrete system subjected
to nonstationary random excitation. The behaviors of a class of nonlinear viscoelastic shear
building structures subjected to random excitation by using the stochastic linearization technique
was developed by Chang et al. [24]. In addition, Chang and his associate [25] used the linearization
method in conjunction with Galerkin technique to investigate the dynamic response of a non
uniform orthotropic circular plate. Eliskakoff and Fang [26] investigated the large amplitude
random vibrations of a beam on elastic foundation by using a new stochastic lineralization
technique. This new approach is based on requirement that the mean square deviation on the
strain energy of the nonlinearly deformed beam and that of the equivalent beam in a linear state,
should be minimum. Also, Elishakoff and Colajanni [27] proposed a new version for the
stochastic linearization technique, which has drawn the attention of most researchers engaging in
nonlinear random vibration problem. In this study, two error-free stochastic linearization
techniques are elucidated, namely those based on the force linearization and energy linearization.
Applying the stochastic concepts to the structural analysis is very essential and has been well

developed recently. The problems of random vibration include the randomness in the dynamic
loadings that is only random with respect to time. These dynamic loadings or excitations from
wind pressure, jet engine exhaust, earthquake motion or ocean waves which are random in
nature can be efficiently handled by stochastic processes. In this study, the stochastic dynamic
analysis of a geometrically nonlinear shell structure with random excitation is dealt with by
using the finite element method in conjunction with linearization technique. From the engineer-
ing point of view, these statistical results are very important for estimating the reliability of the
structure.
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2. Formulations of the problem

2.1. Definition of shell element

Consider the problem of a curved thin shell structure as shown in Fig. 1, a simple and efficient
finite element named Serendipity 8-nodes element shown in Fig. 2 is adopted in this investigation,
which was first suggested by Cook [28]. This kind of shell element contains five degrees of freedom
H
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Fig. 1. The configuration of the problem.

Fig. 2. Type of shell finite element used.
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at each of the eight nodes: u, v, w, a, b, of which the first three are translations in the
global directions and the last two are rotations about the local axes. The geometric layout of
such element is presented in Fig. 3, where the coordinates of any point can be expressed as
follows:

x

y

z

2
64
3
75 ¼X8

i¼1

Ni

xi

yi

zi

2
64

3
75þX8

i¼1

NiB
hi

2

l3i

m3i

n3i

2
64

3
75, (1)

where Ni are the interpolation functions, ½l3i;m3i; n3i�
T are the directional cosines of a vector V3i

that is normal to the middle surface and spans the thickness hi of the shell at node i. It should be
noted that another two vectors V1i and V2i are orthogonal to vector V3i and to each other. The
choice for the direction of one of them is arbitrary. To settle these vectors, we assume V2i and V3i

are given, and vector V1i is rapidly obtained by the following expression:

V1i ¼ V2i � V3i. (2)

Meanwhile, the generic displacements u can be written in terms of the nodal displacements qi as

u ¼
X8
i¼1

½Ni�qi, (3)
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Fig. 3. The geometric layout of the node.
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where

Ni½ � ¼

1 0 0 �
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2
zl1i
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2
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2
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hi

2
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2
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2
66666664

3
77777775

qi ¼ ui vi wi ai bi

h i
u ¼ u v w

� �
ð4Þ

In this paper, the structure was assumed to be under an excessive loading in such a way that the
large displacements and large rotations may occur, therefore, the geometric nonlinearity of the
displacements must be considered in order to get more accurate results for the displacements of
the structure. A total lagrangian approach is adopted throughout in which displacements are
referred to the original configuration, and then the Green’s strains and Piola–Kirchhoff stress
formulations denote the strain and stress vectors in this study. In accordance with the thin shell
theory we neglect �z0 and sz0 , in the direction z0 and the material is assumed to be linear elastic and
isotropic. There exists a transformation matrix ½T � which is the directional cosines between the
local coordinate system ðx0y0z0Þ and global coordinate system ðxyzÞ. Therefore the following
equations can be formulated:

s0 ¼ ½D0��0,

s ¼ ½D��,

½D� ¼ ½T �½D0�½T �T,

sT ¼ ½ sx sy sz tyz txz txy �T,

�T ¼ ½ �x �y �z gyz gxz gxy �
T, ð5Þ

where ½D0� is a matrix embracing the Young’s modulus of elasticity E and Possion’s ratio v.

Expressing the strain vector in the matrix form as follows:

� ¼

�x

�y

�z
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2
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3
777777777775
¼

ux

vy

wz
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3
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þ

1
2
ðu2

x þ v2x þ w2
xÞ

1
2
ðu2y þ v2y þ w2

yÞ

1
2
ðu2z þ v2z þ w2

zÞ

uxuy þ vxvy þ wxwy

uyuz þ vyvz þ wywz

uxuz þ vxvz þ wxwz

2
6666666666664

3
7777777777775
,

¼ �L þ �NL, ð6Þ

where eL is the linear strain and �NL is the nonlinear strain.
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If we define a new vector G ¼ ½Gx;Gy;Gz�
T, where GT

x ¼ ½ux; vx;wx�, GT
y ¼ ½uy; vy;wy� and

GT
z ¼ ½uz; vz;wz�, respectively, the strain vector in Eq. (6) can be simplified as

� ¼ ½h�Gþ 1
2
½a�G. (7)

2.2. Derivation of governing equation

If G is expressed in terms of shape functions and nodal displacements then G ¼ ½f �q, dG ¼ ½f �dq,
where ½f � is a matrix defined purely in terms of the coordinates. Also, it can be easily shown that
[da]G ¼ [a]dG. Therefore, the variation of strain will be

d� ¼ ð½h�½f � þ ½a�½f �Þdq. (8)

Considering the above properties, the virtual strain energy of internal stress can be obtained as

dEint ¼

Z
v

d�Ts dV

¼ dqT

Z
v

ð½h�½f � þ ½a�½f �ÞTs dV

¼ dqT

Z
v

½b�Ts dV , ð9Þ

where ½b� ¼ ½h�½f � þ ½a�½f � is the nonlinear strain matrix.
Continually, we consider the virtual work of the external force as follows:

dW ext ¼ dqTP�

Z
v

ðduÞTr €udV , (10)

where P is the external force, r is the mass density and €u is the acceleration. Substituting Eq. (3)
into Eq. (10), we obtain the following:

dW ext ¼ dqT P� r
Z

v

½N�T � ½N� dV

� �
€q

� �
, (11)

where r
R

v
½N�T � ½N� dV ¼ ½m� is the consistent mass matrix.

By using the principle of virtual work, dW ext must be equal to dEint when a structure reaches a
state of dynamic equilibrium. Therefore, substituting Eqs. (9) and (10) into this relation and
canceling the virtual displacements, then including the damping effect, we obtain the governing
matrix equation of the structure after assembly as follows:

½M� €Uþ ½C� _Uþ RðUÞ ¼ PðtÞ, (12)

where ½M� is the global consistent mass matrix of the structure, ½C� is the global damping matrix of
the structure, _U is the global velocity vector of the structure, €U is the global acceleration vector of
the structure, U is the global displacement vector of the structure, P is the global external force
vector of the structure and RðUÞ ¼

R
V
½B�Ts dV is the global vector of restoring forces of the

structure that depends on the displacement field. In the present study, the geometric shapes, sizes
of the structure and the material properties are assumed to be deterministic, only the external
forces P(t) of the structure are considered to be a nonstationary random process. In addition, R is
the global nodal restoring force vector of the structure which is nonlinear. The system will be
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assumed to be initially at rest and therefore

Uð0Þ ¼ _Uð0Þ ¼ 0. (13)

3. Equivalent linearization approach

The candidate equation for equivalent linear system can be assumed as

½M� €Uþ ½C� _Uþ K½QðtÞ�U ¼ PðtÞ. (14)

It is noted that Eq. (14) can be treated as a linear differential equation with nonconstant
stiffness matrix, which does not depend on the displacement but on the instantaneous statistical
properties of displacement, say QðtÞ. Meanwhile, if the excitations are assumed to be Gaussian
with zero mean, the response of the system will be Gaussian as well and then the response can be
described completely by its covariance. That is

QðtÞ ¼ E½UUT�, (15)

where E½d� denotes the expected value. Also, the matrix ½M� and ½C� remain constants during the
process since the material properties are deterministic and ½C� is assumed to be proportional to
matrix ½M�. The initial conditions for Eq. (14) are assumed to be identical to those in Eq. (12).
According to the Priestley’s model, a nonstationary random process P(t) with zero mean and time
modulation function AðtÞ can be expressed as

PðtÞ ¼ AðtÞrðtÞ, (16)

where rðtÞ is a stationary Gaussian random process with zero mean and the power spectral density
SðoÞ. Substituting Eq. (16) into Eq. (14), the associated equivalent linear equation can therefore
be written as

½M� €Uþ ½C� _Uþ K½QðtÞ�U ¼ AðtÞrðtÞ. (17)

Let the vector d be the difference between the nonlinear system and the equivalent linear
system, and the d is given by

d ¼ K½QðtÞ�U� RðUÞ. (18)

In order to obtain the optimal coefficients of matrix K, an instantaneous measure, which is
denoted by the mean square value of, d has to be a minimum. It gives that

E½dTd� ¼ E½kdk2� (19)

is the minimum for all UðtÞ of the class of solutions of Eq. (14). In addition, the necessary
conditions for Eq. (19) to be true is

qE½dTd�
qkij

¼ 0; i; j ¼ 1; 2; . . . ; n, (20)

where n is the dimension of discretized system. Consequently, substituting Eqs. (18) and (19) into
Eq. (20) and performing the partial differentiation, we obtain the set of linear equations as

E½UUT�½K�T ¼ E½URTðUÞ�. (21)
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Nevertheless, it can be known that if U is a jointly Gaussian random process with zero mean and
also U is sufficiently smooth such that the first partial derivatives of RðUÞ with respect to U exist,
then the following relation can be obtained.

E½URTðUÞ� ¼ E½UUT�E
qRTðUÞ

qU

� �
. (22)

Substituting Eq. (22) into Eq. (21), the essential result of the stiffness matrix which based on the
linearization approach can be easily achieved when the input loading P(t) is assumed to be a zero-
mean Gaussian process. Consequently, the expression of the effective stiffness matrix is

½K�T ¼ E
qRTðUÞ

qU

� �
. (23)

According to the application of the state equation, Eq. (17) can be expressed in terms of the
first-order differential equation as

_z ¼ GzþWðtÞrðtÞ, (24)

with

G ¼
0 I

�M�1K½QðtÞ� �M�1C

" #
, (25)

WðtÞ ¼
0

M�1AðtÞ

" #
(26)

and

zðtÞ ¼
UðtÞ

_UðtÞ

" #
; _zðtÞ ¼

_UðtÞ
€UðtÞ

" #
, (27)

where I is a n� n unity matrix, AðtÞ and rðtÞ are the time modulated function and a stationary
Gaussian random process with zero mean, respectively. Furthermore, Eq. (24) is the so called
state equation which has been widely used in the analysis of random vibration.
4. Determination of the covariance matrix

The state equation can be solved directly as follows. First of all, let ZðtÞ to be the matrix which
satisfy the homogenous equation

_Z ¼ G½QðtÞ�Z; Zð0Þ ¼ 1 (28)

and then by using the fundamental computation of ordinary differential equation, the solution of
Eq. (24) can be expressed as

zðtÞ ¼ ZðtÞ

Z t

0

Z�1ðkÞWðkÞrðkÞ dk: (29)
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It is noted that when matrix A½QðtÞ� is continuous function of QðtÞ, the solution of Eq. (29) can
be determined uniquely. Also, it can be easily shown that the expected value of zðtÞ is identical to
zero that satisfies the previous assumption. Then the covariance matrix QðtÞ is obtained by using
Eq. (29) and some operations of transpose, multiplying and the expectations as

QðtÞ ¼

Z þ1
�1

Yðo; tÞȲT
ðo; tÞSðoÞ do, (30)

with

Yðo; tÞ ¼ ZðtÞ

Z t

0

Z�1ðsÞWðsÞeios ds, (31)

where Ȳ denotes the complex conjugate pair of Y.
It is of interest to note that the N-dimensional quantity Yðo; tÞ as defined in Eq. (31) satisfies the

differential equation

_Y ¼ GYþWðtÞeiot, (32)

with the initial condition

Yð0Þ ¼ 0. (33)

Thus, Yðo; tÞ has an immediate physical significance. It is simply the response of the linear system
of Eq. (24), except that the excitation rðtÞ is now harmonic and deterministic rather than random.
Nevertheless, the response of Yðo; tÞ tends to oscillate rapidly is easily seen when the time

becomes large. In order to obtain the more accurate approach, the more evaluations and
computational time are required relatively. An alternative method to approximate the covariance
matrix QðtÞ can be proposed which the solutions base on the autocorrelation function of the
excitation in time domain, rather than the previous spectrum density function in frequency
domain.
The derivations of the differential equation which include the covariance matrix QðtÞ presented

in time domain can be shown easily, for which QðtÞ must satisfy the following relation:

_Q ¼ GQþ ðGQÞT þUðtÞWT
ðtÞ þWðtÞUTðtÞ (34)

with the initial condition

Qð0Þ ¼ 0, (35)

where

UðtÞ ¼ ZðtÞ

Z t

0

Z�1ðtÞWðtÞE½rðtÞrðtÞ�dt, (36)

E½rðtÞrðtÞ� expresses the autocorrelation function of the excitation. Both Eqs. (34) and (36) are
solved simultaneously to obtain the covariance quantities. The integration of Eq. (36) should be
performed numerically at each time step and this may result in a lot of errors and the
computational costs cannot be omitted, however, this scheme is better than those obtained from
the integration under the frequency domain in Eq. (30).
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In fact, Eq. (34) is nonlinear because matrix G depends on QðtÞ and a practical iteration
procedure is required to obtain the responses which can be summarized as:
(a)
 Assign an initial value to the instantaneous covariance matrix.

(b)
 Using Eq. (23) to construct the matrix of the system.

(c)
 Solve Eqs. (34) and (36) simultaneously for the new instantaneous covariance matrix.

(d)
 Repeat (b) to (c) until a specified tolerance is satisfied.
5. Monte Carlo simulation

Simulation of nonstationary Gaussian random process P(t) with zero mean can be formulated by

PðtÞ ¼
ffiffiffi
2
p XN

k¼1

½SPðokÞDo�1=2Cosðokt� fkÞWðtÞ, (37)

where WðtÞ is a deterministically modulating time function as defined previously. Nevertheless, for
the case of a random process of Gaussian white noise with zero mean, Eq. (37) cannot apply
straightforwardly and therefore we must turn to alternative formulation or procedure. A model
similar to that employed by Clough and Penzien [29] approximates the white noise process. For
analytical purpose one may wish to generate sample function which approach white noise. This
procedure can be carried out digitally by first sampling a sequence of pairs of statistically
independent random numbers x1; x2; . . . ; xn; all of which have a uniform probability distribution
over the range 0oxo 1. A new sequence of pairs of statistically independent random numbers
y1; y2; . . . ; yn;, are generated by using the relations

yi ¼ ð�2 ln xiÞ
1=2Cosð2pxiþ1Þ,

yiþ1 ¼ ð�2 ln xiÞ
1=2Sinð2pxiþ1Þ. ð38Þ

It can easily be shown that Y i’s process a Gaussian distribution with zero mean and variance of
unity.
When the sequence of Y i’s are generated, the modulating random force is given by

PðtiÞ ¼ ð2pS0=DtÞ1=2yiWðtiÞ; 1pipn, (39)

where Dt is the time interval between the successive time steps and the power spectral density SðoÞ
of the new process can be generated by

SðoÞ ¼ S0
6� 8CosðoDtÞ þ 2Cosð2oDtÞ

ðoDtÞ4
. (40)

It is obvious that SðoÞ will close to S0 when o approaches to zero with constant Dt.
A complete ensemble of m time, the solution of Eq. (17) can be obtained for each different

sample function. Based on these different dynamic responses, the statistical functions can be
evaluated consequently.
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6. Numerical analysis

In order to verify the formulations that were stated previously, a numerical example is
presented and the configuration is shown in Fig. 1. The geometric measurements and the material
properties of the shell structure are assumed to be a ¼ 8m, b ¼ 1m, h ¼ 0.01m, E ¼ 70Gpa,
n ¼ 0:33, r ¼ 2710 kg/m3, H ¼ 0.2m, where a, b, h, E, n, r, H denote the dimensions, thickness,
Young’s modulus of elasticity, Poisson’s ratio, mass density and the height of center, respectively.
The boundary conditions of the shell structure are assumed to be simply supported or clamped at
both shorter sides while the other two longer sides are assumed to be free, respectively. In the
numerical computations, the whole shell structure is divided into 32� 16 shell elements, which is
adequate to reach the convergence of the results. This can be verified since the standard deviation
of the displacement at the center of shell in the present mesh is almost the same as those based on
24� 16 elements mesh or 16� 16 elements mesh. In fact, the relative errors of the numerical
results among these three different meshes were less than 0.1%. For the purpose of carrying out
the numerical computation of some response quantities and their statistics, the computer
programs are coded on HP 715/100 to this aim. The computational cost of the presented study
based on the specified computer and 32� 16 elements mesh was approximately 40min. The
computation time was pretty high due to several reasons as follows. Firstly, we dealt with the
random vibration analysis, therefore, the determination of covariance matrix of the nodal
displacements was quite necessary and the size of the matrix was the square of the numbers of
degrees of freedom; secondly, several iterations must be performed until a specified tolerance is
satisfied, since we were solving the nonlinear problem, it took approximately 5–7 iterations during
each time step in our particular numerical example. Needless to say, the computational cost for
Monte Carlo simulation was tremendously huge; it was approximately 10 h against 40min based
on stochastic equivalent linearization technique proposed by the present study.
In the present study, the nonstationary excitation model is assumed to be a product of the

deterministic time modulation function and the stationary random process. The deterministic time
modulation function is given by (41) and presented in Fig. 4.

AðtÞ ¼
e�at � e�bt

g
. (41)

In Eq. (41), g ¼ maxðe�at � e�btÞ for t40 is a normalizing constant which can be shown to be

g ¼
a
b

� �a=b�a

�
a
b

� �b=b�a

. (42)

Both a and b are constants and equal to 0.8/s and 1.6/s, respectively. Then the maximum value of
AðtÞ occurs at t ¼ 0.91 s, as plotted in Fig. 4. Furthermore, the random process rðtÞ in Eq. (17) is
assumed to be a stationary Gaussian with zero mean and its corresponding spectrum, as
illustrated in Fig. 5, is assumed to be the white noise spectral density function with magnitude S0

and S0 is equal to 0.01m2/s3. Incidentally, the damping matrix ½C� of Eq. (14) is assumed to be
proportional to the mass matrix ½M�, that is, ½C� ¼ 2x̄o0½M� where x̄ ¼ 0:05 is the damping ratio
and o0 ¼ 5:323 rad/s is the fundamental natural frequency of the shell structure.
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In general, the maximum statistic response may occur commonly at the center of the shell under
the uniform distributed load. Therefore, all results indicated in this investigation are focused on
this particular position of the shell structure. The standard deviation of the displacement UðtÞ, the
standard deviation of the velocity _UðtÞ and the correlation coefficient rU _U for UðtÞ and _UðtÞ are
presented in Figs. 6–8. In order to check the accuracy of the stochastic equivalent linearization
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Fig. 6. The standard deviation of the displacement at center of the shell (simply supported).
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Fig. 7. The standard deviation of the velocity at center of the shell (simply supported).
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technique, the Monte Carlo simulation with 200 samples is adopted to perform the simulation
analysis. As it can be seen from Figs. 6 to 8, the results from the equivalent linearization and
Monte Carlo simulation show a fairly good agreement. However, some discrepancy between these
two techniques is unavoidable. In addition, the physical significance of the correlation coefficient
rU _U for UðtÞ and _UðtÞ is that if rU _U is large and positive, the values of UðtÞ and _UðtÞ tend to be
both large or both small relative to their respective means; otherwise, if rU _U is small or zero, there
is little or no relationship between the values of UðtÞ and _UðtÞ. In Fig. 8, the displacement and
velocity of the shell structure is evidently relative to each other at the beginning of the excitation
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Fig. 8. The correlation coefficient for UðtÞ and _UðtÞ at center of the shell (simply supported).
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Fig. 9. The standard deviation of the displacement at center of the shell (clamped).
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applied, and then it decreases rapidly with nonlinear manner which is expected. Meanwhile, all
statistical responses in the clamped case, as presented in Figs. 9–11 have the similar phenomena
but with smaller quantities than those in the simply supported case which is quite reasonable.
From the engineering point of view, these statistical results play an important role in estimating
the structural safety and reliability.



ARTICLE IN PRESS

0.0 1.0 2.0 3.0 4.0 5.0
Time (sec)

0.0E+0

1.1E-3

2.2E-3

3.3E-3

4.4E-3

5.5E-3

St
an

da
rd

 d
ev

ia
tio

n 
of

 v
el

oc
ity

 (
m

/s
ec

)

Monte Carlo simulation

linearization

Fig. 10. The standard deviation of the velocity at center of the shell (clamped).
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Fig. 11. The correlation coefficient for UðtÞ and _UðtÞ at center of the shell clamped).

T.-P. Chang et al. / Journal of Sound and Vibration 291 (2006) 240–257 255
7. Summary

In this investigation, a nonlinear displacement description is extended to the dynamic analysis
of a geometrically nonlinear shell structure by using the finite element method, which improved
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the traditional restrict of small increments during the period of deformation. Particularly, after a
series of numerical analysis, the present finite element formulations are very effective and rapid
with respect to the convergence in iteration. Some statistical responses of the geometrically
nonlinear shell structure, which is subjected to a nonstationary random excitation, are studied by
means of the stochastic equivalent linearization technique. The Monte Carlo simulation is
adopted to check the accuracy of these results that shows a fairly good comparison. Finally, it
should be emphasized that these statistically dynamical responses are very useful for estimating
the reliability of the structure.
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